Optimizing Wavelets for the Analysis of fMRI data
نویسندگان
چکیده
Ruttimann et al. have proposed to use the wavelet transform for the detection and localization of activation patterns in functional magnetic resonance imaging (fMRI). Their main idea was to apply a statistical test in the wavelet domain to detect the coefficients that are significantly different from zero. Here, we improve the original method in the case of non-stationary Gaussian noise by replacing the original z-test by a t-test that takes into account the variability of each wavelet coefficient separately. The application of a threshold that is proportional to the residual noise level, after the reconstruction by an inverse wavelet transform, further improves the localization of the activation pattern in the spatial domain. A key issue is to find out which wavelet and which type of decomposition is best suited for the detection of a given activation pattern. In particular, we want to investigate the applicability of alternative wavelet bases that are not necessarily orthogonal. For this purpose, we consider the various brands of fractional spline wavelets (orthonormal, B-spline, and dual) which are indexed by a continuously-varying order parameter α. We perform an extensive series of tests using simulated data and compare the various transforms based on their false detection rate (type I + type II errors). In each case, we observe that there is a strongly optimal value of α and a best number of scales that minimizes the error. We also find that splines generally outperform Daubechies wavelets and that they are quite competitive with SPM (the standard analysis method used in the field), although it uses much simpler statistics. An interesting practical finding is that performance is strongly correlated with the number of coefficients detected in the wavelet domain, at least in the orthonormal and B-spline cases. This suggest that it is possible to optimize the structural wavelet parameters simply by maximizing the number of wavelet counts, without any prior knowledge of the activation pattern. Some examples of analysis of real data are also presented.
منابع مشابه
Operator-Like Wavelets with Application to Functional Magnetic Resonance Imaging
We introduce a new class of wavelets that behave like a given differential operator L. Our construction is inspired by the derivative-like behavior of classical wavelets. Within our framework, the wavelet coefficients of a signal y are the samples of a smoothed version of L{y}. For a linear system characterized by an operator equation L{y} = x, the operator-like wavelet transform essentially de...
متن کاملStatistical Analysis Methods for the fMRI Data
Functional magnetic resonance imaging (fMRI) is a safe and non-invasive way to assess brain functions by using signal changes associated with brain activity. The technique has become a ubiquitous tool in basic, clinical and cognitive neuroscience. This method can measure little metabolism changes that occur in active part of the brain. We process the fMRI data to be able to find the parts of br...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کامل